Memory Hierarchy

Bojian Zheng
CSCD70 Spring 2018

bojian@cs.toronto.edu



mailto:bojian@cs.toronto.edu

Memory Hierarchy

* From programmer’s point of view, memory
« has infinite capacity (i.e. can store infinite amount of data)
e has zero access time (latency)

 But those two requirements contradict with each other.
 Large memory usually has high access latency.
 Fast memory cannot go beyond certain capacity limit.

 Therefore, we want to have multiple levels of storage and ensure
most of the data the processor needs Is kept in the fastest level.




Memory Hierarchy

What in reality What we see (Ideally)

L1-$
(Fast but Small)

Y

L2-$ Main Memory
* (Large AND Fast)

Main Memory
(Large but Slow)




Locality

* Temporal Locality: If an unsigned a = 10;
address gets accessed, then it Is

very likely that the exact same // 'a’ will hopefully be used
address will be accessed once again soon

again in the near future.




Locality

» Spatial Locality: If an address

gets accessed, t
likely that near

nen It Is very
oy addresses will

be accessed Int

ne near future.

unsigned A[10];
A[D] = 10;

// 'A[4] or 'A[6] will
hopefully be used soon



Cache Basics

* Memory is divided into fixed
size blocks. Each block maps to
one location in the cache (called
cache block or cache line),
determined by the index bites.

tag I index I offset

Memory Address




Direct-Mapped Cache

tag index I t;%?—

der’ess




Direct-Mapped Cache: Problem

 Suppose that two variables A
(address O'b10000000) and B
(address O'b11000000) map to
the same cache line. Interleaving
accesses to them will lead to O
hit rate (i.e. A->B->A->B->...).

» Those are called conflict
misses (more later).




Set-Assoclative Cache

tag I index jﬂ%f‘

wddr’ess




Set-Assoclative Cache: Problem

* More expansive tag comparison.

* More complicated design — lots of things to consider:
* Where should we insert the new incoming cache block?
« What happens when a cache hit occurs? How should we adjust the priorities?
« What happens when a cache miss occurs, and the cache set has been fully

occupied (Replacement Policy)»




Replacement Policy

* Which one to evict under the condition that the cache set is full?
* Least-Recently-Used?
« Random?
* Pseudo-Least-Recently-Used?

* Belady’s (a.k.a. Optimal) Replacement Policy
« Evict block that will be reused furthest in the future.
* Impossible to implement in hardware ... why?
« But is still useful ... why?




Cache Misses

* There are § types of cache misses:

e Cold Misses: happens whenever we reference one variable (memory
location) for the first time. Such misses are unavoidable (??7?).

° Cagacity Misses: happens because our cache is too small.

» Misses that happen even under fully-associative cache and optimal
replacement policy.

 Cache size is smaller than working set size.

e Conflict M isse_s: happens because we do not have enough
associativity.




Handling Writes

« Write-Back vs. Write-Through
« Write-Back: Write modified data to memory when the cache block is evicted.

* (+) Can effectively combine multiple writes to the same block.

* (-) Needs an extra bit indicating dirty or clean.
» Write-Through: Write modified data to memory whenever write occurs.
 (+) Simple and makes It easy when arguing about consistency.

* (-) Cannot combine writes and is more bandwidth intensive.




Prefetching

« Upon one cache miss, try to predict what the next cache miss will be.
* For instance, miss on A[O] = prefetch A[1] into the cache.

» Good for memory access patterns that are highly predictable, e.qg.

e Instruction Memory
» Array Accesses (Uniform Stride)

* Risk: Cache Pollution
* Goal: Timeliness, Coverage, Accuracy




Questions?

 Cache Basics » Handling Writes
 Cache « Write-Back
 Locality * Write-Through
» Set-Associativity » Prefetching

» Replacement Policy . Risk

 Cache Misses - Goal
 Cold
 Capacity

e Conflict



Preview: Cache & Compiler

* Ok ... So how this 1s related to compiler?

unsigned A[20][10];

for (unsigned i = 0; i < 10; ++i)
for (unsigned j = O; j < 20; ++j)
A[jI[i1=j* 10 +i; // Assume A is row-major.

* This 1s not very nice ... because cache has been utilized badly : (




Preview: Cache & Compiler

for (i € [0,10))
for (j € [0,20))
AT =™ 10+

for (j € [0,20))
for (i € [0,10))
ALIlI1=§* 10 +i;

17



Preview: Cache & Compiler

 Consider another example:
unsigned A[100][100];

for (unsigned i = O; i < 100; ++i)
for (unsigned j = O; j < 100; ++j)
sum += A[i][j]



Preview: Cache & Compiler

* Apply prefetching:
unsigned A[100][100];

for (unsigned i = O; i < 100; ++i)
for (unsigned j = 0; j< 100; j += $_BLOCK_SIZE)
for (unsigned jj = j: jj < j + $_BLOCK_SIZE; ++jj)
prefetch(&A[il[j]+ $_BLOCK_SIZE)
sum += A[i][jj]

19



Preview: Design Tradeoff

 Consider the following code:
unsigned A[20][10];

for (unsigned i = 0; i < 10; ++i)
for (unsigned j = O; j < 19; ++))
Al = A[j+L]IE



Preview: Design Tradeoff

Loop Parallelization Cache Locality
for (i € [0,10)) for (j € [0,19))
for (j € [0,19)) for (i € [0,10))

ALJILT = AL+1][H]: ALJILT = ALj+1][i];



