
Memory Hierarchy
Bojian Zheng

CSCD70 Spring 2018

bojian@cs.toronto.edu

1

mailto:bojian@cs.toronto.edu


Memory Hierarchy

• From programmer’s point of view, memory

• has infinite capacity (i.e. can store infinite amount of data)

• has zero access time (latency)

• But those two requirements contradict with each other.

• Large memory usually has high access latency.

• Fast memory cannot go beyond certain capacity limit.

• Therefore, we want to have multiple levels of storage and ensure 
most of the data the processor needs is kept in the fastest level.

2



Memory Hierarchy

What in reality What we see (Ideally)

3



Locality

•Temporal Locality: If an 

address gets accessed, then it is 
very likely that the exact same 
address will be accessed once 
again in the near future.

unsigned a = 10;

…

// ‘a’ will hopefully be used 
again soon

4



Locality

•Spatial Locality: If an address 

gets accessed, then it is very 
likely that nearby addresses will 
be accessed in the near future.

unsigned A[10];

A[5] = 10;

…

// ‘A[4]’ or ‘A[6]’ will 
hopefully be used soon

5



Cache Basics

• Memory is divided into fixed 
size blocks. Each block maps to 
one location in the cache (called 
cache block or cache line), 
determined by the index bites.

6



Direct-Mapped Cache

7



Direct-Mapped Cache: Problem

• Suppose that two variables A
(address 0’b10000000) and B
(address 0’b11000000) map to 
the same cache line. Interleaving 
accesses to them will lead to 0
hit rate (i.e. A->B->A->B->…).

• Those are called conflict
misses (more later).

8



Set-Associative Cache

9



Set-Associative Cache: Problem

• More expansive tag comparison.

• More complicated design – lots of things to consider:

• Where should we insert the new incoming cache block?

• What happens when a cache hit occurs? How should we adjust the priorities?

• What happens when a cache miss occurs, and the cache set has been fully 

occupied (Replacement Policy)?

10



Replacement Policy

• Which one to evict under the condition that the cache set is full?

• Least-Recently-Used?

• Random?

• Pseudo-Least-Recently-Used?

• Belady’s (a.k.a. Optimal) Replacement Policy

• Evict block that will be reused furthest in the future.

• Impossible to implement in hardware … why?

• But is still useful … why?

11



Cache Misses

• There are 3 types of cache misses:

•Cold Misses: happens whenever we reference one variable (memory 

location) for the first time. Such misses are unavoidable (???).

•Capacity Misses: happens because our cache is too small.

• Misses that happen even under fully-associative cache and optimal 
replacement policy.

• Cache size is smaller than working set size.

•Conflict Misses: happens because we do not have enough 

associativity.

12



Handling Writes

• Write-Back vs. Write-Through

• Write-Back: Write modified data to memory when the cache block is evicted.

• (+) Can effectively combine multiple writes to the same block.

• (-) Needs an extra bit indicating dirty or clean.

• Write-Through: Write modified data to memory whenever write occurs.

• (+) Simple and makes it easy when arguing about consistency.

• (-) Cannot combine writes and is more bandwidth intensive.

13



Prefetching

• Upon one cache miss, try to predict what the next cache miss will be.

• For instance, miss on A[0] ⇒ prefetch A[1] into the cache.

• Good for memory access patterns that are highly predictable, e.g. 

• Instruction Memory

• Array Accesses (Uniform Stride)

•Risk: Cache Pollution

•Goal: Timeliness, Coverage, Accuracy

14



Questions?

• Cache Basics

• Cache

• Locality

• Set-Associativity

• Replacement Policy

• Cache Misses

• Cold

• Capacity

• Conflict

• Handling Writes

• Write-Back

• Write-Through

• Prefetching

• Risk

• Goal

15



Preview: Cache & Compiler

• Ok … So how this is related to compiler?

unsigned A[20][10];

for (unsigned i = 0; i < 10; ++i)

for (unsigned j = 0; j < 20; ++j)

A[j][i] = j * 10 + i; // Assume A is row-major.

• This is not very nice … because cache has been utilized badly : (

16



Preview: Cache & Compiler

for (i ∈ 0, 10 )

for (j ∈ 0, 20 )

A[j][i] = j * 10 + i;

for (j ∈ 0, 20 ) 

for (i ∈ 0, 10 )

A[j][i] = j * 10 + i;

17



Preview: Cache & Compiler

• Consider another example:

unsigned A[100][100];

for (unsigned i = 0; i < 100; ++i)

for (unsigned j = 0; j < 100; ++j)

sum += A[i][j]

18



Preview: Cache & Compiler

• Apply prefetching:

unsigned A[100][100];

for (unsigned i = 0; i < 100; ++i)

for (unsigned j = 0; j < 100; j += $_BLOCK_SIZE)

for (unsigned jj = j; jj < j + $_BLOCK_SIZE; ++jj)

prefetch(&A[i][j] + $_BLOCK_SIZE)

sum += A[i][jj]

19



Preview: Design Tradeoff

• Consider the following code:

unsigned A[20][10];

for (unsigned i = 0; i < 10; ++i)

for (unsigned j = 0; j < 19; ++j)

A[j][i] = A[j+1][i];

20



Preview: Design Tradeoff

Loop Parallelization

for (i ∈ 0, 10 )

for (j ∈ 0, 19 )

A[j][i] = A[j+1][i];

Cache Locality

for (j ∈ 0, 19 )

for (i ∈ 0, 10 ) 

A[j][i] = A[j+1][i];

21


